
Online Retailer Design

Introduction and Background

In an era of rapid digital transformation, online retailers have become integral to modern

commerce, providing a platform for businesses to reach global audiences with ease.

This project aims to develop a secure online retailer application using Python to

enhance the user experience and the security mechanisms. We aim to create a

command-line interface where a user can create an account, login, and input their card

details in order to purchase a product. The login and card identifier are stored in a

database, which is only accessible via an admin account.

Rationale

The rationale behind selecting this use-case is that the context of an online retailer

interface is ubiquitous within day-to-day life.

Project Assumptions

There will be two types of users: normal users (customers) and administrator users.

Administrators will have full access.

1



System requirements and Specifications

1. Functional Requirements

a. Users:

i. Account creation/update/deletion

ii. Credit card info. addition/update/removal

iii. Product purchase

b. Admins:

i. Account creation/update/deletion

ii. Ability to promote a user account to an admin account.

iii. Product addition/update/view/removal

iv. Ability to view user details.

2. Tools and Technologies

a. Programming Language: Python

b. Version Control: Git

c. IDE: VS Code, PyCharm etc.

d. Linters and Static Analysis: PyLint

3. Libraries for encryption and testing

a. Encryption: hashlib

b. Testing: Pytest

2



Methodology

The chosen methodology is the waterfall model, due to its linear nature (Lutkevich &

Lewis, N.D.). As the requirements are set in stone and clearly outlined, iteration on them

is not required, thus a model such as a waterfall is ideal.

Security Requirements

1. Refrain from storing passwords. Instead, maintain hashes and perform

comparisons during the login process.

2. Mandate the use of robust passwords for both users and administrators.

3. Encrypt card details prior to their storage.

4. Protect against Brute Force attacks by requiring strong passwords and rate

limiting failed login attempts.

5. Prevent denial of service attack by rate limiting the API, API injections by

sanitizing user-provided input, buffer overflow by using tested external libraries

as Python is already fairly secured against this.

6. Add logs for significant events in the application e.g. Password change,

Successful and failed logins, Successful purchases, etc.

UML Diagrams

Log-In intended use-case example:

3



4



Log-In misuse case example:

OWASP 10 Proactive Controls

The OWASP Foundation (N.D.) has identified the “Top 10 Web Application Security

Risks” of 2021 along with the relevant mitigations. In the following table, we list these

risks and the mitigations that apply to our application. We also refer to the “10 proactive

controls” that OWASP (N.D.) has identified that should be included in every project as

they relate to the risks and mitigations.

5



Risk Mitigation Proactive Control

A01:2021-Broken Access

Control

● Check that users

have access to

requested

resources.

● Rate limit the API

● Add unit and

integration tests to

test access control.

C1: Implement Access

Control

A02:2021-Cryptographic

Failures

● Don’t store unused

sensitive data.

● Encrypt stored

sensitive data.

● Do not store

passwords; instead,

store their salted

hashes.

C2: Use cryptography the

proper way.

A03:2021-Injection ● Use an

Object-Relational

Mapping (ORM) like

C3: Validate all input and

handle exceptions

6



SQL Alchemy or

Django to access

the database (Ben

Fredj et al., 2020).

● Paginate responses

to avoid mass

disclosure.

A04:2021-Insecure Design ● Use a secure

development

lifecycle (SDL) such

as Secure SCRUM.

● Refer to the security

risks and mitigation

user stories.

● Use unit and

integration tests to

check that misuse

cases are mitigated.

● Associate each

record with a tenant

to enforce

segregation.

C4: Address Security from

the Start

7



A05:2021-Security

Misconfiguration

● Use identical

security

configurations in all

environments (e.g.,

development,

testing, and

production).

● Exclude unused

features and

frameworks.

C5: Secure By Default

Configurations

A06:2021-Vulnerable and

Outdated Components

Exclude unused Python

dependencies from the

project.

C6: Keep your components

secure.

A07:2021-Identification

and Authentication Failures

● Do not give admins

default credentials.

● Check passwords

against weak

password lists.

● Enforce a minimum

password length.

● Use the same

message for

C7: Implement Digital

Identity

8



registration and

password reset

outcomes to prevent

enumeration.

● Block login after

repeated failed login

attempts.

A08:2021-Software and

Data Integrity Failures

Use pip for dependency

management.

C8: Leverage Browser

Security Features

A09:2021-Security Logging

and Monitoring Failures

Log login failures. C9: Implement Security

Logging and Monitoring

A10:2021-Server-Side

Request Forgery

Exclude server-side

requests as a feature.

C10: Stop Server Side

Request Forgery

Threat Modelling

STRIDE

Threat Mitigation

Spoofing Get user from request on server side.

Tampering Check user privileges before allowing database and

filesystem writes.

9



Repudiation Add logging.

Information disclosure Paginate API responses.

Denial of service Rate limit the API.

Elevation of privilege Add system monitoring, log events, require strong

passwords, limit the number of privileged accounts, and

keep software updated.

DREAD

Category Threats

Damage ● Financial API credentials exposed (e.g., payment

processor).

● Unbacked-up data destroyed or encrypted for ransom.

Reproducibility Part of the system is not monitored (i.e., has no logs)

Exploitability Published vulnerabilities in unpatched software

Affected users ● Privilege escalation allows attackers to affect other users.

● Data destroyed or encrypted for ransom.

● Exposure to payment processor credentials allows

attackers to use other users’ payment methods.

Discoverability ● Published vulnerabilities in unpatched software

10



● Endpoints vulnerable to enumeration

● Record ownership not enforced.

Legal Requirements

The application must adhere to various legal requirements to ensure compliance and

avoid legal repercussions. Key legal considerations include data protection, consumer

rights, and e-commerce regulations. The application must secure customer data,

including personal and payment information, as mandated by the General Data

Protection Regulation (GDPR) and Payment Services Regulations (PSR).

GDPR

The General Data Protection Regulation (GDPR) is a critical component of the legal

framework. The GDPR mandates that businesses protect EU citizens' personal data,

ensuring that it is processed lawfully, fairly, and transparently. The application must

implement features that enable users to consent to data collection, access their data,

and request its deletion (Voigt & Von Dem Bussche, 2017).

The Payments Services Regulations

The Payment Services Regulations (PSR) establish the legal framework for payment

services within the European Economic Area (EEA). The application must comply with

PSR to ensure secure and reliable payment processing. This includes implementing

11



strong customer authentication, ensuring payment data security, and providing clear

information on fees and charges (Lynn et al., 2019).

Conclusion

The design document provides a framework for designing a secure online retail

application. It applies industry best practices for ensuring all major security

considerations are addressed at the application design stage. Defence mechanisms

against common attack patterns are outlined. The intended user experience is

described. Examples are given using UML diagrams for both an intended and a

malicious use-case. Finally, the proactive controls, GPDR, and legal requirements are

outlined, as compliance with them is necessary.

12



References
Ben Fredj, O., Cheikhrouhou, O., Krichen, M., Hamam, H. & Derhab, A. (2020) An

OWASP Top Ten Driven Survey on Web Application Protection Methods, in: J.

Garcia-Alfaro, J. Leneutre, N. Cuppens, and R. Yaich (eds) Revised Selected Papers.

Risks and Security of Internet and Systems, Paris: Springer. 235–252. Available from:

https://doi.org/10.1007/978-3-030-68887-5.

Lutkevich, B. & Lewis, S. (N.D.) What is the Waterfall Model? - Definition and Guide.

Software Quality. Available from:

https://www.techtarget.com/searchsoftwarequality/definition/waterfall-model [Accessed

5 September 2024].

Lynn, T., Mooney, J.G., Rosati, P. & Cummins, M. (eds) (2019) Disrupting Finance:

FinTech and Strategy in the 21st Century. Cham: Springer International Publishing

(Palgrave Studies in Digital Business & Enabling Technologies). Available from:

https://doi.org/10.1007/978-3-030-02330-0.

OWASP Foundation (N.D.a) OWASP Top 10. Available from:

https://owasp.org/www-project-top-ten/ [Accessed 4 August 2024].

OWASP Foundation (N.D.b) OWASP Proactive Controls. Available from:

https://top10proactive.owasp.org/ [Accessed 31 August 2024].

13



Voigt, P. & Von Dem Bussche, A. (2017) The EU General Data Protection Regulation

(GDPR). Cham: Springer International Publishing. Available from:

https://doi.org/10.1007/978-3-319-57959-7.

14


